Wei-Shinn Ku


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space
Bo Hui | Tian Xia | Wei-Shinn Ku
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Matching equivalent entities across Knowledge graphs is a pivotal step for knowledge fusion. Previous approaches usually study the problem in Euclidean space. However, recent works have shown that hyperbolic space has a higher capacity than Euclidean space and hyperbolic embedding can represent the hierarchical structure in a knowledge graph. In this paper, we propose a localized geometric method to find equivalent entities in hyperbolic space. Specifically, we use a hyperbolic neural network to encode the lingual information of entities and the structure of both knowledge graphs into a low-dimensional hyperbolic space. To address the asymmetry of structure on different KGs and the localized nature of relations, we learn an instance-specific geometric mapping function based on rotation to match entity pairs. A contrastive loss function is used to train the model. The experiment verifies the power of low-dimensional hyperbolic space for entity matching and shows that our method outperforms the state of the art by a large margin.