Wei Chen

Other people with similar names: Wei Chen, Wei Chen, Wei Chen

Unverified author pages with similar names: Wei Chen


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Dual Class Knowledge Propagation Network for Multi-label Few-shot Intent Detection
Feng Zhang | Wei Chen | Fei Ding | Tengjiao Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-label intent detection aims to assign multiple labels to utterances and attracts increasing attention as a practical task in task-oriented dialogue systems. As dialogue domains change rapidly and new intents emerge fast, the lack of annotated data motivates multi-label few-shot intent detection. However, previous studies are confused by the identical representation of the utterance with multiple labels and overlook the intrinsic intra-class and inter-class interactions. To address these two limitations, we propose a novel dual class knowledge propagation network in this paper. In order to learn well-separated representations for utterances with multiple intents, we first introduce a label-semantic augmentation module incorporating class name information. For better consideration of the inherent intra-class and inter-class relations, an instance-level and a class-level graph neural network are constructed, which not only propagate label information but also propagate feature structure. And we use a simple yet effective method to predict the intent count of each utterance. Extensive experimental results on two multi-label intent datasets have demonstrated that our proposed method outperforms strong baselines by a large margin.