Wei-Bin Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Layer-Aware Task Arithmetic: Disentangling Task-Specific and Instruction-Following Knowledge
Yan-Lun Chen | Yi-Ru Wei | Chia-Yi Hsu | Chia-Mu Yu | Chun-Ying Huang | Ying-Dar Lin | Yu-Sung Wu | Wei-Bin Lee
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) demonstrate strong task-specific capabilities through fine-tuning, but merging multiple fine-tuned models often leads to degraded performance due to overlapping instruction-following components. Task Arithmetic (TA), which combines task vectors derived from fine-tuning, enables multi-task learning and task forgetting but struggles to isolate task-specific knowledge from general instruction-following behavior. To address this, we propose Layer-Aware Task Arithmetic (LATA), a novel approach that assigns layer-specific weights to task vectors based on their alignment with instruction-following or task-specific components. By amplifying task-relevant layers and attenuating instruction-following layers, LATA improves task learning and forgetting performance while preserving overall model utility. Experiments on multiple benchmarks, including WikiText-2, GSM8K, and HumanEval, demonstrate that LATA outperforms existing methods in both multi-task learning and selective task forgetting, achieving higher task accuracy and alignment with minimal degradation in output quality. Our findings highlight the importance of layer-wise analysis in disentangling task-specific and general-purpose knowledge, offering a robust framework for efficient model merging and editing.