Wangyuxuan Zhai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MUCAR: Benchmarking Multilingual Cross-Modal Ambiguity Resolution for Multimodal Large Language Models
Xiaolong Wang | Zhaolu Kang | Wangyuxuan Zhai | Xinyue Lou | Yunghwei Lai | Ziyue Wang | Yawen Wang | Kaiyu Huang | Yile Wang | Peng Li | Yang Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal Large Language Models (MLLMs) have demonstrated significant advances across numerous vision-language tasks. Due to their strong performance in image-text alignment, MLLMs can effectively understand image-text pairs with clear meanings. However, effectively resolving the inherent ambiguities in natural language and visual contexts remains challenging. Existing multimodal benchmarks typically overlook linguistic and visual ambiguities, relying mainly on unimodal context for disambiguation and thus failing to exploit the mutual clarification potential between modalities. To bridge this gap, we introduce MUCAR, a novel and challenging benchmark designed explicitly for evaluating multimodal ambiguity resolution across multilingual and cross-modal scenarios. MUCAR includes: (1) a multilingual dataset where ambiguous textual expressions are uniquely resolved by corresponding visual contexts, and (2) a dual-ambiguity dataset that systematically pairs ambiguous images with ambiguous textual contexts, with each combination carefully constructed to yield a single, clear interpretation through mutual disambiguation. Extensive evaluations involving 19 state-of-the-art multimodal models—encompassing both open-source and proprietary architectures—reveal substantial gaps compared to human-level performance, highlighting the need for future research into more sophisticated cross-modal ambiguity comprehension methods, further pushing the boundaries of multimodal reasoning.