Wang Huizhen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Overcoming Language Priors with Counterfactual Inference for Visual Question Answering
Ren Zhibo | Wang Huizhen | Zhu Muhua | Wang Yichao | Xiao Tong | Zhu Jingbo
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“Recent years have seen a lot of efforts in attacking the issue of language priors in the field ofVisual Question Answering (VQA). Among the extensive efforts, causal inference is regarded asa promising direction to mitigate language bias by weakening the direct causal effect of questionson answers. In this paper, we follow the same direction and attack the issue of language priorsby incorporating counterfactual data. Moreover, we propose a two-stage training strategy whichis deemed to make better use of counterfactual data. Experiments on the widely used bench-mark VQA-CP v2 demonstrate the effectiveness of the proposed approach, which improves thebaseline by 21.21% and outperforms most of the previous systems.”