Wang Cai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Beyond Demonstrations: Dynamic Vector Construction from Latent Representations
Wang Cai | Hsiu-Yuan Huang | Zhixiang Wang | Yunfang Wu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In-Context derived Vector (ICV) methods extract task-relevant representations from large language models (LLMs) and reinject them during inference, achieving comparable performance to few-shot In-Context Learning (ICL) without repeated demonstration processing. However, existing ICV methods remain sensitive to ICL-specific factors, often use coarse or semantically fragmented representations as the source of the vector, and rely on heuristic-based injection positions, limiting their applicability.To address these issues, we propose Dynamic Vector (DyVec), which incorporates an Exhaustive Query Rotation (EQR) strategy to extract robust semantically aggregated latent representations by mitigating variance introduced by ICL. It then applies Dynamic Latent Segmentation and Injection to adaptively partition representations based on task complexity and leverages REINFORCE-based optimization to learn optimal injection positions for each segment.Experiments results show that DyVec outperforms few-shot ICL, LoRA, and prior ICV baselines. Further analysis highlights the effectiveness of dynamically segmenting and injecting semantically aggregated latent representations. DyVec provides a lightweight and data-efficient solution for inference-time task adaptation.