This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
WakakoKashino
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We have constructed the Corpus of Everyday Japanese Conversation (CEJC) and published it in March 2022. The CEJC is designed to contain various kinds of everyday conversations in a balanced manner to capture their diversity. The CEJC features not only audio but also video data to facilitate precise understanding of the mechanism of real-life social behavior. The publication of a large-scale corpus of everyday conversations that includes video data is a new approach. The CEJC contains 200 hours of speech, 577 conversations, about 2.4 million words, and a total of 1675 conversants. In this paper, we present an overview of the corpus, including the recording method and devices, structure of the corpus, formats of video and audio files, transcription, and annotations. We then report some results of the evaluation of the CEJC in terms of conversant and conversation attributes. We show that the CEJC includes a good balance of adult conversants in terms of gender and age, as well as a variety of conversations in terms of conversation forms, places, activities, and numbers of conversants.
Compilation of a 100 million words balanced corpus called the Balanced Corpus of Contemporary Written Japanese (or BCCWJ) is underway at the National Institute for Japanese Language and Linguistics. The corpus covers a wide range of text genres including books, magazines, newspapers, governmental white papers, textbooks, minutes of the National Diet, internet text (bulletin board and blogs) and so forth, and when possible, samples are drawn from the rigidly defined statistical populations by means of random sampling. All texts are dually POS-analyzed based upon two different, but mutually related, definitions of word. Currently, more than 90 million words have been sampled and XML annotated with respect to text-structure and lexical and character information. A preliminary linear discriminant analysis of text genres using the data of POS frequencies and sentence length revealed it was possible to classify the text genres with a correct identification rate of 88% as far as the samples of books, newspapers, whitepapers, and internet bulletin boards are concerned. When the samples of blogs were included in this data set, however, the identification rate went down to 68%, suggesting the considerable variance of the blog texts in terms of the textual register and style.