Wafa Abdullah Alrajhi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Assessing the Linguistic Knowledge in Arabic Pre-trained Language Models Using Minimal Pairs
Wafa Abdullah Alrajhi | Hend Al-Khalifa | Abdulmalik AlSalman
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

Despite the noticeable progress that we recently witnessed in Arabic pre-trained language models (PLMs), the linguistic knowledge captured by these models remains unclear. In this paper, we conducted a study to evaluate available Arabic PLMs in terms of their linguistic knowledge. BERT-based language models (LMs) are evaluated using Minimum Pairs (MP), where each pair represents a grammatical sentence and its contradictory counterpart. MPs isolate specific linguistic knowledge to test the model’s sensitivity in understanding a specific linguistic phenomenon. We cover nine major Arabic phenomena: Verbal sentences, Nominal sentences, Adjective Modification, and Idafa construction. The experiments compared the results of fifteen Arabic BERT-based PLMs. Overall, among all tested models, CAMeL-CA outperformed the other PLMs by achieving the highest overall accuracy.