One of the mechanisms through which disinformation is spreading online, in particular through social media, is by employing propaganda techniques. These include specific rhetorical and psychological strategies, ranging from leveraging on emotions to exploiting logical fallacies. In this paper, our goal is to push forward research on propaganda detection based on text analysis, given the crucial role these methods may play to address this main societal issue. More precisely, we propose a supervised approach to classify textual snippets both as propaganda messages and according to the precise applied propaganda technique, as well as a detailed linguistic analysis of the features characterising propaganda information in text (e.g., semantic, sentiment and argumentation features). Extensive experiments conducted on two available propagandist resources (i.e., NLP4IF’19 and SemEval’20-Task 11 datasets) show that the proposed approach, leveraging different language models and the investigated linguistic features, achieves very promising results on propaganda classification, both at sentence- and at fragment-level.
Emotion analysis in polarized contexts represents a challenge for Natural Language Processing modeling. As a step in the aforementioned direction, we present a methodology to extend the task of Aspect-based Sentiment Analysis (ABSA) toward the affect and emotion representation in polarized settings. In particular, we adopt the three-dimensional model of affect based on Valence, Arousal, and Dominance (VAD). We then present a Brexit scenario that proves how affect varies toward the same aspect when politically polarized stances are presented. Our approach captures aspect-based polarization from newspapers regarding the Brexit scenario of 1.2m entities at sentence-level. We demonstrate how basic constituents of emotions can be mapped to the VAD model, along with their interactions respecting the polarized context in ABSA settings using biased key-concepts (e.g., “stop Brexit” vs. “support Brexit”). Quite intriguingly, the framework achieves to produce coherent aspect evidences of Brexit’s stance from key-concepts, showing that VAD influence the support and opposition aspects.