This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
VolkerDellwo
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Databases for studying speech rhythm and tempo exist for numerous languages. The present corpus was built to allow comparisons between Arabic speech rhythm and other languages. 10 Egyptian speakers (gender-balanced) produced speech in two different speaking styles (read and spontaneous). The design of the reading task replicates the methodology used in the creation of BonnTempo corpus (BTC). During the spontaneous task, speakers talked freely for more than one minute about their daily life and/or their studies, then they described the directions to come to the university from a famous near location using a map as a visual stimulus. For corpus annotation, the database has been manually and automatically time-labeled, which makes it feasible to perform a quantitative analysis of the rhythm of Arabic in both Modern Standard Arabic (MSA) and Egyptian dialect variety. The database serves as a phonetic resource, which allows researchers to examine various aspects of Arabic supra-segmental features and it can be used for forensic phonetic research, for comparison of different speakers, analyzing variability in different speaking styles, and automatic speech and speaker recognition.
This contribution describes an on-going projects a smartphone application called Voice Ãpp, which is a follow-up of a previous application called Dialäkt Ãpp. The main purpose of both apps is to identify the users Swiss German dialect on the basis of the dialectal variations of 15 words. The result is returned as one or more geographical points on a map. In Dialäkt Ãpp, launched in 2013, the user provides his or her own pronunciation through buttons, while the Voice Ãpp, currently in development, asks users to pronounce the word and uses speech recognition techniques to identify the variants and localize the user. This second app is more challenging from a technical point of view but nevertheless recovers the nature of dialect variation of spoken language. Besides, the Voice Ãpp takes its users on a journey in which they explore the individuality of their own voices, answering questions such as: How high is my voice? How fast do I speak? Do I speak faster than users in the neighbouring city?