Vivienne Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
EKRAG: Benchmark RAG for Enterprise Knowledge Question Answering
Tan Yu | Wenfei Zhou | Lei Yang | Aaditya Shukla | Meenakshi Madugula | Pritam Gundecha | Nick Burnett | Anbang Xu | Vishal Seth | Tamar Bar | Rama Akkiraju | Vivienne Zhang
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing

Retrieval-augmented generation (RAG) offers a robust solution for developing enterprise internal virtual assistants by leveraging domain-specific knowledge and utilizing information from frequently updated corporate document repositories. In this work, we introduce the Enterprise-Knowledge RAG (EKRAG) dataset to benchmark RAG for enterprise knowledge question-answering (QA) across a diverse range of corporate documents, such as product releases, technical blogs, and financial reports. Using EKRAG, we systematically evaluate various retrieval models and strategies tailored for corporate content. We propose novel embedding-model (EM)-as-judge and ranking-model (RM)-as-judge approaches to assess answer quality in the context of enterprise information. Combining these with the existing LLM-as-judge method, we then comprehensively evaluate the correctness, relevance, and faithfulness of generated answers to corporate queries. Our extensive experiments shed light on optimizing RAG pipelines for enterprise knowledge QA, providing valuable guidance for practitioners. This work contributes to enhancing information retrieval and question-answering capabilities in corporate environments that demand high degrees of factuality and context-awareness.