Vishrawas Gopalakrishnan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Time-Independent and Language-Independent Extraction of Multiword Expressions From Twitter
Nikhil Londhe | Rohini Srihari | Vishrawas Gopalakrishnan
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Multiword Expressions (MWEs) are crucial lexico-semantic units in any language. However, most work on MWEs has been focused on standard monolingual corpora. In this work, we examine MWE usage on Twitter - an inherently multilingual medium with an extremely short average text length that is often replete with grammatical errors. In this work we present a new graph based, language agnostic method for automatically extracting MWEs from tweets. We show how our method outperforms standard Association Measures. We also present a novel unsupervised evaluation technique to ascertain the accuracy of MWE extraction.