Virginia Aglietti


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
BIG-Bench Extra Hard
Mehran Kazemi | Bahare Fatemi | Hritik Bansal | John Palowitch | Chrysovalantis Anastasiou | Sanket Vaibhav Mehta | Lalit K Jain | Virginia Aglietti | Disha Jindal | Peter Chen | Nishanth Dikkala | Gladys Tyen | Xin Liu | Uri Shalit | Silvia Chiappa | Kate Olszewska | Yi Tay | Vinh Q. Tran | Quoc V Le | Orhan Firat
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current benchmarks for large language model (LLM) reasoning predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various general-purpose and reasoning-specialized models on BBEH and observe an accuracy of 23.9% for the best general-purpose model and 54.2% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.