Vincent Zheng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
A Simple Regularization-based Algorithm for Learning Cross-Domain Word Embeddings
Wei Yang | Wei Lu | Vincent Zheng
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Learning word embeddings has received a significant amount of attention recently. Often, word embeddings are learned in an unsupervised manner from a large collection of text. The genre of the text typically plays an important role in the effectiveness of the resulting embeddings. How to effectively train word embedding models using data from different domains remains a problem that is less explored. In this paper, we present a simple yet effective method for learning word embeddings based on text from different domains. We demonstrate the effectiveness of our approach through extensive experiments on various down-stream NLP tasks.