Vincent Warmerdam


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Going Beyond T-SNE: Exposing whatlies in Text Embeddings
Vincent Warmerdam | Thomas Kober | Rachael Tatman
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)

We introduce whatlies, an open source toolkit for visually inspecting word and sentence embeddings. The project offers a unified and extensible API with current support for a range of popular embedding backends including spaCy, tfhub, huggingface transformers, gensim, fastText and BytePair embeddings. The package combines a domain specific language for vector arithmetic with visualisation tools that make exploring word embeddings more intuitive and concise. It offers support for many popular dimensionality reduction techniques as well as many interactive visualisations that can either be statically exported or shared via Jupyter notebooks. The project documentation is available from https://rasahq.github.io/whatlies/.