Viktor Kunčak


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Reliable Evaluation and Benchmarks for Statement Autoformalization
Auguste Poiroux | Gail Weiss | Viktor Kunčak | Antoine Bosselut
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.

pdf bib
RLMEval: Evaluating Research-Level Neural Theorem Proving
Auguste Poiroux | Antoine Bosselut | Viktor Kunčak
Findings of the Association for Computational Linguistics: EMNLP 2025

Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3% pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.