This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
VikramNatraj
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In this paper, we investigated two approaches to clinical question-answering based on patient-formulated questions, supported by their narratives and brief medical records. The first approach leverages zero- and few-shot prompt engineering techniques with GPT-based Large Language Models (LLMs), incorporating strategies such as prompt chaining and chain-of-thought reasoning to guide the models in generating answers. The second approach adopts a two-steps structure: first, a text-classification stage uses embedding-based models (e.g., BERT variants) to identify sentences within the medical record that are most relevant to the given question; then, we prompt an LLM to paraphrase them into an answer so that it is generated exclusively from these selected sentences. Our empirical results demonstrate that the first approach outperforms the classification-guided pipeline, achieving the highest score on the development set and the test set using prompt chaining. Code: github.com/armandviolle/BioNLP-2025