Vikram Kumaran


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Improving Classroom Dialogue Act Recognition from Limited Labeled Data with Self-Supervised Contrastive Learning Classifiers
Vikram Kumaran | Jonathan Rowe | Bradford Mott | Snigdha Chaturvedi | James Lester
Findings of the Association for Computational Linguistics: ACL 2023

Recognizing classroom dialogue acts has significant promise for yielding insight into teaching, student learning, and classroom dynamics. However, obtaining K-12 classroom dialogue data with labels is a significant challenge, and therefore, developing data-efficient methods for classroom dialogue act recognition is essential. This work addresses the challenge of classroom dialogue act recognition from limited labeled data using a contrastive learning-based self-supervised approach (SSCon). SSCon uses two independent models that iteratively improve each other’s performance by increasing the accuracy of dialogue act recognition and minimizing the embedding distance between the same dialogue acts. We evaluate the approach on three complementary dialogue act recognition datasets: the TalkMoves dataset (annotated K-12 mathematics lesson transcripts), the DailyDialog dataset (multi-turn daily conversation dialogues), and the Dialogue State Tracking Challenge 2 (DSTC2) dataset (restaurant reservation dialogues). Results indicate that our self-supervised contrastive learning-based model outperforms competitive baseline models when trained with limited examples per dialogue act. Furthermore, SSCon outperforms other few-shot models that require considerably more labeled data.