Viggo Unmack Gascou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
How to Encode Domain Information in Relation Classification
Elisa Bassignana | Viggo Unmack Gascou | Frida Nøhr Laustsen | Gustav Kristensen | Marie Haahr Petersen | Rob van der Goot | Barbara Plank
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Current language models require a lot of training data to obtain high performance. For Relation Classification (RC), many datasets are domain-specific, so combining datasets to obtain better performance is non-trivial. We explore a multi-domain training setup for RC, and attempt to improve performance by encoding domain information. Our proposed models improve > 2 Macro-F1 against the baseline setup, and our analysis reveals that not all the labels benefit the same: The classes which occupy a similar space across domains (i.e., their interpretation is close across them, for example “physical”) benefit the least, while domain-dependent relations (e.g., “part-of”) improve the most when encoding domain information.