Vidhya Varshany J S


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
EXL Health AI Lab at MEDIQA-OE 2025: Evaluating Prompting Strategies with MedGemma for Medical Order Extraction
Abhinand Balachandran | Bavana Durgapraveen | Gowsikkan Sikkan Sudhagar | Vidhya Varshany J S | Sriram Rajkumar
Proceedings of the 7th Clinical Natural Language Processing Workshop

The accurate extraction of medical orders fromdoctor-patient conversations is a critical taskfor reducing clinical documentation burdensand ensuring patient safety. This paper detailsour team’s submission to the MEDIQA-OE-2025Shared Task. We investigate the performanceof MedGemma, a new domain-specific opensource language model, for structured order extraction. We systematically evaluate three distinct prompting paradigms: a straightforwardone-shot approach, a reasoning-focused ReActframework, and a multi-step agentic workflow.Our experiments reveal that while more complex frameworks like ReAct and agentic flowsare powerful, the simpler one-shot promptingmethod achieved the highest performance onthe official validation set. We posit that on manually annotated transcripts, complex reasoningchains can lead to “overthinking” and introduce noise, making a direct approach more robust and efficient. Our work provides valuableinsights into selecting appropriate promptingstrategies for clinical information extraction invaried data conditions.