Victor O.k. Li

Other people with similar names: Victor O.K. Li


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
An LLM-based Temporal-spatial Data Generation and Fusion Approach for Early Detection of Late Onset Alzheimer’s Disease (LOAD) Stagings Especially in Chinese and English-speaking Populations
Yang Han | Jacqueline C.k. Lam | Victor O.k. Li | Lawrence Y. L. Cheung
Findings of the Association for Computational Linguistics: EMNLP 2025

Alzheimer’s Disease (AD), the 7th leading cause of death globally, demands scalable methods for early detection. While speech-based diagnostics offer promise, existing approaches struggle with temporal-spatial (T-S) challenges in capturing subtle linguistic shifts across different disease stages (temporal) and in adapting to cross-linguistic variability (spatial). This study introduces a novel Large Language Model (LLM)-driven T-S fusion framework that integrates multilingual LLMs, contrastive learning, and interpretable marker discovery to revolutionize Late Onset AD (LOAD) detection. Our key innovations include: (1) T-S Data Imputation: Leveraging LLMs to generate synthetic speech transcripts across different LOAD stages (NC, Normal Control; eMCI, early Mild Cognitive Impairment; lMCI, late Mild Cognitive Impairment; AD) and languages (Chinese, English, Spanish), addressing data scarcity while preserving clinical relevance (expert validation: 86% agreement with LLM-generated labels). (2) T-S Transformer with Contrastive Learning: A multilingual model that disentangles stage-specific (temporal) and language-specific (spatial) patterns, achieving a notable improvement of 10.9–24.7% in F1-score over existing baselines. (3) Cross-Linguistic Marker Discovery: Identifying language-agnostic markers and language-specific patterns to enhance interpretability for clinical adoption. By unifying temporal LOAD stages and spatial diversity, our framework achieves state-of-the-art performance in early LOAD detection while enabling cross-linguistic diagnostics. This study bridges NLP and clinical neuroscience, demonstrating LLMs’ potential to amplify limited biomedical data and advance equitable healthcare AI.