This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
VictorMijangos
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
This work presents Py-elotl, a suite of tools and resources in Python for processing text in several indigenous languages spoken in Mexico. These resources include parallel corpora, linguistic taggers/analyzers, and orthographic normalization tools. This work aims to develop essential resources to support language pre-processing and linguistic research, and the future creation of more complete downstream applications that could be useful for the speakers and enhance the visibility of these languages. The current version supports language groups such as Nahuatl, Otomi, Mixtec, and Huave. This project is open-source and freely available for use and collaboration
LLMs have been widely adopted to tackle many traditional NLP tasks. Their effectiveness remains uncertain in scenarios where pre-trained models have limited prior knowledge of a language. In this work, we examine LLMs’ generalization in under-resourced settings through the task of orthographic normalization across Otomi language variants. We develop two approaches: a rule-based method using a finite-state transducer (FST) and an in-context learning (ICL) method that provides the model with string transduction examples. We compare the performance of FSTs and neural approaches in low-resource scenarios, providing insights into their potential and limitations. Our results show that while FSTs outperform LLMs in zero-shot settings, ICL enables LLMs to surpass FSTs, stressing the importance of combining linguistic expertise with machine learning in current approaches for low-resource scenarios.
In linguistics, interlinear glossing is an essential procedure for analyzing the morphology of languages. This type of annotation is useful for language documentation, and it can also provide valuable data for NLP applications. We perform automatic glossing for Otomi, an under-resourced language. Our work also comprises the pre-processing and annotation of the corpus. We implement different sequential labelers. CRF models represented an efficient and good solution for our task. Two main observations emerged from our work: 1) models with a higher number of parameters (RNNs) performed worse in our low-resource scenario; and 2) the information encoded in the CRF feature function plays an important role in the prediction of labels; however, even in cases where POS tags are not available it is still possible to achieve competitive results.
We use two small parallel corpora for comparing the morphological complexity of Spanish, Otomi and Nahuatl. These are languages that belong to different linguistic families, the latter are low-resourced. We take into account two quantitative criteria, on one hand the distribution of types over tokens in a corpus, on the other, perplexity and entropy as indicators of word structure predictability. We show that a language can be complex in terms of how many different morphological word forms can produce, however, it may be less complex in terms of predictability of its internal structure of words.