Vicente Grau


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Medical Graph RAG: Evidence-based Medical Large Language Model via Graph Retrieval-Augmented Generation
Junde Wu | Jiayuan Zhu | Yunli Qi | Jingkun Chen | Min Xu | Filippo Menolascina | Yueming Jin | Vicente Grau
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce MedGraphRAG, a novel graph-based Retrieval-Augmented Generation (RAG) framework designed to enhance LLMs in generating evidence-based medical responses, improving safety and reliability with private medical data. We introduce Triple Graph Construction and U-Retrieval to enhance GraphRAG, enabling holistic insights and evidence-based response generation for medical applications. Specifically, we connect user documents to credible medical sources and integrate Top-down Precise Retrieval with Bottom-up Response Refinement for balanced context awareness and precise indexing. Validated on 9 medical Q&A benchmarks, 2 health fact-checking datasets, and a long-form generation test set, MedGraphRAG outperforms state-of-the-art models while ensuring credible sourcing. Our code is publicly available.