Vera Senderowicz


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
From “Comment allez-vous?” to “Comment ça va?”: Leveraging Large Language Models to Automate Formality Adaptation in Translation
Vera Senderowicz
Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 2: Presentations)

The evolution of machine translation (MT) has seen significant advancements in data cleaning and post-editing methodologies, but numerous cases requiring semantic comprehension have still necessitated human intervention—until the emergence of Large Language Models (LLMs). In our research, we have explored an innovative application of Generative AI (Gen AI) to adapt bilingual content’s target segments from a formal to an informal register, in scenarios where the source language lacks explicit grammatical markers for formality and thus is grammatically bivalent in that sense. In this session, we will demonstrate how LLMs, enhanced by supplementary methodologies such as fine-tuning and combined with other, more legacy language models, can efficiently perform this formality adaptation task. We aim to showcase best practices for leveraging Gen AI in adapting bilingual content registers, highlighting the potential for cost reduction and quality enhancement in translation processes.
Search
Co-authors
    Venues
    Fix data