Venkatesh Elango


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning
Venkatesh Elango | Karan Uppal
Proceedings of the 12th International Workshop on Semantic Evaluation

We present our methods and results for affect analysis in Twitter developed as a part of SemEval-2018 Task 1, where the sub-tasks involve predicting the intensity of emotion, the intensity of sentiment, and valence for tweets. For modeling, though we use a traditional LSTM network, we combine our model with several state-of-the-art techniques to improve its performance in a low-resource setting. For example, we use an encoder-decoder network to initialize the LSTM weights. Without any task specific optimization we achieve competitive results (macro-average Pearson correlation coefficient 0.696) in the El-reg task. In this paper, we describe our development strategy in detail along with an exposition of our results.