Veekshith Rao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Can LLMs Verify Arabic Claims? Evaluating the Arabic Fact-Checking Abilities of Multilingual LLMs
Ayushman Gupta | Aryan Singhal | Thomas Law | Veekshith Rao | Evan Duan | Ryan Luo Li
Proceedings of the 1st Workshop on NLP for Languages Using Arabic Script

Large language models (LLMs) have demonstrated potential in fact-checking claims, yet their capabilities in verifying claims in multilingual contexts remain largely understudied. This paper investigates the efficacy of various prompting techniques, viz. Zero-Shot, English Chain-of-Thought, Self-Consistency, and Cross-Lingual Prompting, in enhancing the fact-checking and claim-verification abilities of LLMs for Arabic claims. We utilize 771 Arabic claims sourced from the X-fact dataset to benchmark the performance of four LLMs. To the best of our knowledge, ours is the first study to benchmark the inherent Arabic fact-checking abilities of LLMs stemming from their knowledge of Arabic facts, using a variety of prompting methods. Our results reveal significant variations in accuracy across different prompting methods. Our findings suggest that Cross-Lingual Prompting outperforms other methods, leading to notable performance gains.