Varun Dhanraj


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Improving Rule-based Reasoning in LLMs using Neurosymbolic Representations
Varun Dhanraj | Chris Eliasmith
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) continue to face challenges in reliably solving reasoning tasks, particularly tasks that involve precise rule following, as often found in mathematical reasoning tasks. This paper introduces a novel neurosymbolic method that improves LLM reasoning by encoding hidden states into neurosymbolic vectors, enabling problem-solving within a neurosymbolic vector space. The results are decoded and merged with the original hidden state, significantly boosting the model’s performance on numerical reasoning tasks. By offloading computation through neurosymbolic representations, this method enhances efficiency, reliability, and interpretability. Our experimental results demonstrate an average of 88.6% lower cross-entropy loss and 15.4 times more problems correctly solved on a suite of mathematical reasoning tasks compared to chain-of-thought prompting and supervised fine-tuning (LoRA), while not hindering the LLM’s performance on other tasks. We make our code available at https://github.com/vdhanraj/Neurosymbolic-LLM.