This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Van-VinhNguyen
Also published as:
Van Vinh Nguyen
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This study introduces Simple Reasoning with Code (SiRC), a novel instruction fine-tuning method for solving mathematical reasoning problems, particularly effective for Vietnamese, which is considered a low-resource language. Specifically, solving mathematical problems requires strategic and logical reasoning, which remains challenging in this research area. This paper presents a simple yet effective instruction fine-tuning method for mathematical reasoning. Unlike previous approaches, our proposed method effectively combines chain-of-thought reasoning with code transfer methods without requiring a sophisticated inference procedure. Furthermore, we focus on exploiting small open-source large language models (LLMs) for the Vietnamese language. In this regard, we first introduce a trainable Vietnamese math reasoning dataset, which is named ViMath-InstructCode. The proposed dataset is then used for fine-tuning open-source LLMs (e.g., less than 10 billion parameters). Experiments conducted on our custom ViMath-Bench dataset, the largest benchmarking dataset focusing on Vietnamese mathematical problems, indicate the promising results of our proposed method. Our source code and dataset are available for further exploitation.
Neural Machine Translation (NMT) has currently obtained state-of-the-art in machine translation systems. However, dealing with rare words is still a big challenge in translation systems. The rare words are often translated using a manual dictionary or copied from the source to the target with original words. In this paper, we propose a simple and fast strategy for integrating constraints during the training and decoding process to improve the translation of rare words. The effectiveness of our proposal is demonstrated in both high and low-resource translation tasks, including the language pairs: English → Vietnamese, Chinese → Vietnamese, Khmer → Vietnamese, and Lao → Vietnamese. We show the improvements of up to +1.8 BLEU scores over the baseline systems.