Valentin Macé


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Using Whole Document Context in Neural Machine Translation
Valentin Macé | Christophe Servan
Proceedings of the 16th International Conference on Spoken Language Translation

In Machine Translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a simple yet promising approach to add contextual information in Neural Machine Translation. We present a method to add source context that capture the whole document with accurate boundaries, taking every word into account. We provide this additional information to a Transformer model and study the impact of our method on three language pairs. The proposed approach obtains promising results in the English-German, English-French and French-English document-level translation tasks. We observe interesting cross-sentential behaviors where the model learns to use document-level information to improve translation coherence.