Valentin-Gabriel Soumah


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Classification automatique de questions spontanées vs. préparées dans des transcriptions de l’oral (Automatic Classification of Spontaneous vs)
Iris Eshkol-Taravella | Angèle Barbedette | Xingyu Liu | Valentin-Gabriel Soumah
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Ce travail a pour objectif de développer un modèle linguistique pour classifier automatiquement des questions issues de transcriptions d’enregistrements provenant des corpus ESLO2 et ACSYNT en deux catégories “spontané” et “préparé”. Avant de procéder au traitement automatique, nous proposons une liste de critères définitoires et discriminants permettant de distinguer les questions parmi d’autres énoncés. Les expériences basées sur des méthodes d’apprentissage supervisé sont réalisées selon une classification multiclasse comprenant les catégories “spontané”, “préparé” et “non-question” et selon une classification binaire incluant les catégories “spontané” et “préparé” uniquement. Les meilleurs résultats pour les méthodes traditionnelles d’apprentissage automatique sont obtenus avec une régression logistique combinée aux critères linguistiques significatifs uniquement (F-score de 0.75). Pour finir, nous mettons en parallèle ces résultats avec ceux obtenus en utilisant des techniques d’apprentissage profond.