Tuğberk Dalkılıç


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
SU-NLP at CASE 2021 Task 1: Protest News Detection for English
Furkan Çelik | Tuğberk Dalkılıç | Fatih Beyhan | Reyyan Yeniterzi
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

This paper summarizes our group’s efforts in the multilingual protest news detection shared task, which is organized as a part of the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) Workshop. We participated in all four subtasks in English. Especially in the identification of event containing sentences task, our proposed ensemble approach using RoBERTa and multichannel CNN-LexStem model yields higher performance. Similarly in the event extraction task, our transformer-LSTM-CRF architecture outperforms regular transformers significantly.