Tu Ngoc Nguyen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
A Trio Neural Model for Dynamic Entity Relatedness Ranking
Tu Ngoc Nguyen | Tuan Tran | Wolfgang Nejdl
Proceedings of the 22nd Conference on Computational Natural Language Learning

Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in a static setting and unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity relations are very dynamic over time. In this work, we propose a neural network-based approach that leverages public attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.