Tsan-Yu Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
CA-EHN: Commonsense Analogy from E-HowNet
Peng-Hsuan Li | Tsan-Yu Yang | Wei-Yun Ma
Proceedings of the Twelfth Language Resources and Evaluation Conference

Embedding commonsense knowledge is crucial for end-to-end models to generalize inference beyond training corpora. However, existing word analogy datasets have tended to be handcrafted, involving permutations of hundreds of words with only dozens of pre-defined relations, mostly morphological relations and named entities. In this work, we model commonsense knowledge down to word-level analogical reasoning by leveraging E-HowNet, an ontology that annotates 88K Chinese words with their structured sense definitions and English translations. We present CA-EHN, the first commonsense word analogy dataset containing 90,505 analogies covering 5,656 words and 763 relations. Experiments show that CA-EHN stands out as a great indicator of how well word representations embed commonsense knowledge. The dataset is publicly available at https://github.com/ckiplab/CA-EHN.