Trung Hieu Ngo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Image incomplète : Une étude d’état de l’art sur les biais dans les grands modèles de langage
Trung Hieu Ngo
Actes des 18e Rencontres Jeunes Chercheurs en RI (RJCRI) et 27ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL)

Les grands modèles de langage (LLM) pré-entraînés ont transformé le traitement du langage naturel (TALN) et les tâches quotidiennes, surpassant les méthodes traditionnelles. Leur utilisation a démocratisé l’accès, facilitant l’écriture, le codage et les conseils de santé. Entraînés sur d’immenses corpus textuels issus d’internet, les LLM héritent de biais, perpétuant des stéréotypes qui peuvent fausser les représentations linguistiques et causer des préjudices représentationnels ou allocationnels. Dans le domaine médical, où les LLM soutiennent la communication et la documentation, ces biais présentent des risques significatifs. Cette revue analyse les recherches sur les biais des LLM, identifie les lacunes concernant les déterminants sociaux de la santé (DSS) et discute de la nécessité d’un cadre pour les aborder de manière exhaustive, améliorant l’intégration sécurisée des LLM en santé.