Trilok Padhi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Just KIDDIN’ : Knowledge Infusion and Distillation for Detection of INdecent Memes
Rahul Garg | Trilok Padhi | Hemang Jain | Ugur Kursuncu | Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics: ACL 2025

Detecting toxicity in online multimodal environments, such as memes, remains a challenging task due to the complex contextual connections across modalities (e.g., text and visual), which demand both common-sense reasoning and contextual awareness. To bridge this gap, we propose a hybrid neurosymbolic framework that unifies (1) distillation of implicit contextual knowledge (e.g., sarcasm, cultural references) from Large Vision-Language Models (LVLMs) and (2) infusion of explicit relational semantics through sub-graphs from Knowledge Graphs (KGs). Experimental results on two benchmark datasets show the superior performance of our approach, Knowledge-Infused Distilled Vision-Language Model (KID-VLM), over the state-of-the-art baselines across AUC and F1, with improvements of 0.5%, and 10.6%, respectively, in HatefulMemes Benchmark across variants. Further, KID-VLM demonstrates better generalizability and achieves the best performance across all baselines in the HarMeme Dataset with a 6.3% and 3.2% in F1 and AUC.Given the contextual complexity of the toxicity detection, KID-VLM showcases the significance of learning compact models (~500M parameters) from both explicit (i.e., KG) and implicit (i.e., LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. Our codes and pretrained models are publicly available.