This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
TongWu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Model (LLM) agents are increasingly being deployed as conversational assistants capable of performing complex real-world tasks through tool integration. This enhanced ability to interact with external systems and process various data sources, while powerful, introduces significant security vulnerabilities. In particular, indirect prompt injection attacks pose a critical threat, where malicious instructions embedded within external data sources can manipulate agents to deviate from user intentions. While existing defenses show promise, they struggle to maintain robust security while preserving task functionality. We propose a novel and orthogonal perspective that reframes agent security from preventing harmful actions to ensuring task alignment, requiring every agent action to serve user objectives. Based on this insight, we develop Task Shield, a test-time defense mechanism that systematically verifies whether each instruction and tool call contributes to user-specified goals. Through experiments on the AgentDojo benchmark, we demonstrate that Task Shield reduces attack success rates (2.07%) while maintaining high task utility (69.79%) on GPT-4o, significantly outperforming existing defenses in various real-world scenarios.
This work-in-progress study compares the accuracy of machine learning and large language models to predict student responses to field-test items on a social-emotional learning assessment. We evaluate how well each method replicates actual responses and examine the item parameters generated by synthetic data to those derived from actual student data.
Ensuring the safety of large language models (LLMs) is paramount, yet identifying potential vulnerabilities is challenging. While manual red teaming is effective, it is time-consuming, costly and lacks scalability. Automated red teaming (ART) offers a more cost-effective alternative, automatically generating adversarial prompts to expose LLM vulnerabilities. However, in current ART efforts, a robust framework is absent, which explicitly frames red teaming as an effectively learnable task. To address this gap, we propose Automated Progressive Red Teaming (APRT) as an effectively learnable framework. APRT leverages three core modules: an Intention Expanding LLM that generates diverse initial attack samples, an Intention Hiding LLM that crafts deceptive prompts, and an Evil Maker to manage prompt diversity and filter ineffective samples. The three modules collectively and progressively explore and exploit LLM vulnerabilities through multi-round interactions. In addition to the framework, we further propose a novel indicator, Attack Effectiveness Rate (AER) to mitigate the limitations of existing evaluation metrics. By measuring the likelihood of eliciting unsafe but seemingly helpful responses, AER aligns closely with human evaluations. Extensive experiments with both automatic and human evaluations, demonstrate the effectiveness of ARPT across both open- and closed-source LLMs. Specifically, APRT effectively elicits 54% unsafe yet useful responses from Meta’s Llama-3-8B-Instruct, 50% from GPT-4o (API access), and 39% from Claude-3.5 (API access), showcasing its robust attack capability and transferability across LLMs (especially from open-source LLMs to closed-source LLMs).
SemEval-2025 Task 3 (Mu-SHROOM) focuses on detecting hallucinations in content generated by various large language models (LLMs) across multiple languages. This task involves not only identifying the presence of hallucinations but also pinpointing their specific occurrences. To tackle this challenge, this study introduces two methods: modified RefChecker and modified SelfCheckGPT. The modified RefChecker integrates prompt-based factual verification into References, structuring them as claim-based tests rather than single external knowledge sources. The modified SelfCheckGPT ~incorporates external knowledge to overcome its reliance on internal knowledge. In addition, both methods’ original prompt designs are enhanced to identify hallucinated words within LLM-generated texts. Experimental results demonstrate the effectiveness of the approach, achieving a high ranking on the test dataset in detecting hallucinations across various languages, with an average IoU of 0.5310 and an average COR of 0.5669.
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance.Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning.
Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions. Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.
Despite many stereotypes targeting intersectional demographic groups, prior studies on stereotypes within Large Language Models (LLMs) primarily focus on broader, individual categories. This research bridges this gap by introducing a novel dataset of intersectional stereotypes, curated with the assistance of the ChatGPT model and manually validated. Moreover, this paper offers a comprehensive analysis of intersectional stereotype propagation in three contemporary LLMs by leveraging this dataset. The findings underscore the urgency of focusing on intersectional biases in ongoing efforts to reduce stereotype prevalence in LLMs.