Tomoki Kitagawa


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Handwritten Character Generation using Y-Autoencoder for Character Recognition Model Training
Tomoki Kitagawa | Chee Siang Leow | Hiromitsu Nishizaki
Proceedings of the Thirteenth Language Resources and Evaluation Conference

It is well-known that the deep learning-based optical character recognition (OCR) system needs a large amount of data to train a high-performance character recognizer. However, it is costly to collect a large amount of realistic handwritten characters. This paper introduces a Y-Autoencoder (Y-AE)-based handwritten character generator to generate multiple Japanese Hiragana characters with a single image to increase the amount of data for training a handwritten character recognizer. The adaptive instance normalization (AdaIN) layer allows the generator to be trained and generate handwritten character images without paired-character image labels. The experiment shows that the Y-AE could generate Japanese character images then used to train the handwritten character recognizer, producing an F1-score improved from 0.8664 to 0.9281. We further analyzed the usefulness of the Y-AE-based generator with shape images, out-of-character (OOC) images, which have different character images styles in model training. The result showed that the generator could generate a handwritten image with a similar style to that of the input character.