Tomas Malik


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Zero-Shot Keyphrase Generation: Investigating Specialized Instructions and Multi-sample Aggregation on Large Language Models
Jishnu Ray Chowdhury | Jayanth Mohan | Tomas Malik | Cornelia Caragea
Findings of the Association for Computational Linguistics: NAACL 2025

Keyphrases are the essential topical phrases that summarize a document. Keyphrase generation is a long-standing NLP task for automatically generating keyphrases for a given document. While the task has been comprehensively explored in the past via various models, only a few works perform some preliminary analysis of Large Language Models (LLMs) for the task. Given the impact of LLMs in the field of NLP, it is important to conduct a more thorough examination of their potential for keyphrase generation. In this paper, we attempt to meet this demand with our research agenda. Specifically, we focus on the zero-shot capabilities of open-source instruction-tuned LLMs (Phi-3, Llama-3) and the closed-source GPT-4o for this task. We systematically investigate the effect of providing task-relevant specialized instructions in the prompt. Moreover, we design task-specific counterparts to self-consistency-style strategies for LLMs and show significant benefits from our proposals over the baselines.