Tom Zick


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RewardBench: Evaluating Reward Models for Language Modeling
Nathan Lambert | Valentina Pyatkin | Jacob Morrison | LJ Miranda | Bill Yuchen Lin | Khyathi Chandu | Nouha Dziri | Sachin Kumar | Tom Zick | Yejin Choi | Noah A. Smith | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: NAACL 2025

Reward models (RMs) are at the crux of successfully using RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. Resources for reward model training and understanding are sparse in the nascent open-source community around them. To enhance scientific understanding of reward models, we present RewardBench, a benchmark dataset and code-base for evaluation. The RewardBench dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We create specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the RewardBench leaderboard, we evaluate RMs trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO). We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.