This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
TolulopeAbiola
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents a multi-step approach for multi-label emotion classification as our system description paper for the SEMEVAL-2025 workshop Task A using machine learning and deep learning models. We test our methodology on English, Spanish, and low-resource Yoruba datasets, with each dataset labeled with five emotion categories: anger, fear, joy, sadness, and surprise. Our preprocessing involves text cleaning and feature extraction using bigrams and TF-IDF. We employ logistic regression for baseline classification and fine-tune Transformer models, such as BERT and XLM-RoBERTa, for improved performance. The Transformer-based models outperformed the logistic regression model, achieving micro-F1 scores of 0.7061, 0.7321, and 0.2825 for English, Spanish, and Yoruba, respectively. Notably, our Yoruba fine-tuned model outperformed the baseline model of the task organizers with micro-F1 score of 0.092, demonstrating the effectiveness of Transformer models in handling emotion classification tasks across diverse languages.
Emotion intensity prediction in text enhances conversational AI by enabling a deeper understanding of nuanced human emotions, a crucial yet underexplored aspect of natural language processing (NLP). This study employs Transformer-based models to classify emotion intensity levels (0–3) for five emotions: anger, fear, joy, sadness, and surprise. The dataset, sourced from the SemEval shared task, was preprocessed to address class imbalance, and model training was performed using fine-tuned *bert-base-uncased*. Evaluation metrics showed that *sadness* achieved the highest accuracy (0.8017) and F1-macro (0.5916), while *fear* had the lowest accuracy (0.5690) despite a competitive F1-macro (0.5207). The results demonstrate the potential of Transformer-based models in emotion intensity prediction while highlighting the need for further improvements in class balancing and contextual representation.
In this paper, we share our best performing submission to the Arabic AI Tasks Evaluation Challenge (ArAIEval) at ArabicNLP 2023. Our focus was on Task 1, which involves identifying persuasion techniques in excerpts from tweets and news articles. The persuasion technique in Arabic texts was detected using a training loop with XLM-RoBERTa, a language-agnostic text representation model. This approach proved to be potent, leveraging fine-tuning of a multilingual language model. In our evaluation of the test set, we achieved a micro F1 score of 0.64 for subtask A of the competition.