Tobias Perschl


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Quantification of Biodiversity from Historical Survey Text with LLM-based Best-Worst-Scaling
Thomas Haider | Tobias Perschl | Malte Rehbein
Proceedings of the 1st Workshop on Ecology, Environment, and Natural Language Processing (NLP4Ecology2025)

In this study, we evaluate methods to determine the frequency of species via quantity estimation from historical survey text. To that end, we formulate classification tasks and finally show that this problem can be adequately framed as a regression task using Best-Worst Scaling (BWS) with Large Language Models (LLMs). We test Ministral-8B, DeepSeek-V3, and GPT-4, finding that the latter two have reasonable agreement with humans and each other. We conclude that this approach is more cost-effective and similarly robust compared to a fine-grained multi-class approach, allowing automated quantity estimation across species.