Tobias Lindenbauer


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
GitGoodBench: A Novel Benchmark For Evaluating Agentic Performance On Git
Tobias Lindenbauer | Egor Bogomolov | Yaroslav Zharov
Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)

Benchmarks for Software Engineering (SE) AI agents, most notably SWE-bench, have catalyzed progress in programming capabilities of AI agents. However, they overlook critical developer workflows such as Version Control System (VCS) operations. To address this issue, we present GitGoodBench, a novel benchmark for evaluating AI agent performance on Version Control System (VCS) tasks. GitGoodBench covers three core Git scenarios extracted from permissive open-source Python, Java, and Kotlin repositories. Our benchmark provides three datasets: a comprehensive evaluation suite (900 samples), a rapid prototyping version (120 samples), and a training corpus (17,469 samples). We establish baseline performance on the prototyping version of our benchmark using GPT-4o equipped with custom tools, achieving a 21.11% solve rate overall. We expect GitGoodBench to serve as a crucial stepping stone toward truly comprehensive SE agents that go beyond mere programming.

pdf bib
From Knowledge to Noise: CTIM-Rover and the Pitfalls of Episodic Memory in Software Engineering Agents
Tobias Lindenbauer | Georg Groh | Hinrich Schuetze
Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)

We introduce CTIM-Rover, an AI agent for Software Engineering (SE) built on top of AutoCodeRover (Zhang et al., 2024) that extends agentic reasoning frameworks with an episodic memory, more specifically, a general and repository-level Cross-Task-Instance Memory (CTIM). While existing open-source SE agents mostly rely on ReAct (Yao et al., 2023b), Reflexion (Shinn et al., 2023), or Code-Act (Wang et al., 2024), all of these reasoning and planning frameworks inefficiently discard their long-term memory after a single task instance. As repository-level understanding is pivotal for identifying all locations requiring a patch for fixing a bug, we hypothesize that SE is particularly well positioned to benefit from CTIM. For this, we build on the Experiential Learning (EL) approach ExpeL (Zhao et al., 2024), proposing a Mixture-Of-Experts (MoEs) inspired approach to create both a general-purpose and repository-level CTIM . We find that CTIM-Rover does not outperform AutoCodeRover in any configuration and thus conclude that neither ExpeL nor DoT-Bank (Lingam et al., 2024) scale to real-world SE problems. Our analysis indicates noise introduced by distracting CTIM items or exemplar trajectories as the likely source of the performance degradation.