Tina Werner


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Experiments in Candidate Phrase Selection for Financial Named Entity Extraction - A Demo
Aman Kumar | Hassan Alam | Tina Werner | Manan Vyas
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations

In this study we develop a system that tags and extracts financial concepts called financial named entities (FNE) along with corresponding numeric values – monetary and temporal. We employ machine learning and natural language processing methods to identify financial concepts and dates, and link them to numerical entities.