Tien-Dat Nguyen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Tdnguyen at CQs-Gen 2025: Adapt Large Language Models with Multi-Step Reasoning for Critical Questions Generation
Tien-Dat Nguyen | Duc-Vu Nguyen
Proceedings of the 12th Argument mining Workshop

This paper explores the generation of Critical Questions (CQs) from argumentative texts using multi-step reasoning techniques, specifically Chain-of-Thoughts (CoT) and Tree-of-Thoughts (ToT) prompting frameworks. CQs are essential for enhancing critical thinking and improving decision-making across various domains. Despite the promise of Large Language Models (LLMs) in this task, generating contextually relevant and logically sound questions remains a challenge. Our experiments show that CoT-based prompting strategies, including Zero-shot and One-shot methods, significantly outperform baseline models in generating high-quality CQs. While ToT prompting offers a more flexible reasoning structure, it was less effective than CoT in this task. We suggest exploring more advanced or computationally intense multi-step reasoning techniques, as well as alternative tree structures for the ToT framework, to further improve CQs-Gen systems.