Tianzhen Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Learning Sparsity for Effective and Efficient Music Performance Question Answering
Xingjian Diao | Tianzhen Yang | Chunhui Zhang | Weiyi Wu | Ming Cheng | Jiang Gui
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Music performances, characterized by dense and continuous audio as well as seamless audio-visual integration, present unique challenges for multimodal scene understanding and reasoning. Recent Music Performance Audio-Visual Question Answering (Music AVQA) datasets have been proposed to reflect these challenges, highlighting the continued need for more effective integration of audio-visual representations in complex question answering. However, existing Music AVQA methods often rely on dense and unoptimized representations, leading to inefficiencies in the isolation of key information, the reduction of redundancy, and the prioritization of critical samples. To address these challenges, we introduce Sparsify, a sparse learning framework specifically designed for Music AVQA. It integrates three sparsification strategies into an end-to-end pipeline and achieves state-of-the-art performance on the Music AVQA datasets. In addition, it reduces training time by 28.32% compared to its fully trained dense counterpart while maintaining accuracy, demonstrating clear efficiency gains. To further improve data efficiency, we propose a key-subset selection algorithm that selects and uses approximately 25% of MUSIC-AVQA v2.0 training data and retains 70–80% of full-data performance across models.