Tianyou Huang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Multi-Error Modeling and Fluency-Targeted Pre-training for Chinese Essay Evaluation
Jingshen Zhang | Xiangyu Yang | Xinkai Su | Xinglu Chen | Tianyou Huang | Xinying Qiu
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“This system report presents our approaches and results for the Chinese Essay Fluency Evaluation (CEFE) task at CCL-2024. For Track 1, we optimized predictions for challenging fine-grained error types using binary classification models and trained coarse-grained models on the Chinese Learner 4W corpus. In Track 2, we enhanced performance by constructing a pseudo-dataset with multiple error types per sentence. For Track 3, where we achieved first place, we generated fluency-rated pseudo-data via back-translation for pretraining and used an NSP-based strategy with Symmetric Cross Entropy loss to capture context and mitigate long dependencies. Our methods effectively address key challenges in Chinese Essay Fluency Evaluation.”