Tianchun Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Towards Universal Debiasing for Language Models-based Tabular Data Generation
Tianchun Li | Tianci Liu | Xingchen Wang | Rongzhe Wei | Pan Li | Lu Su | Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have achieved promising results in tabular data generation. However, inherent historical biases in tabular datasets often cause LLMs to exacerbate fairness issues, particularly when multiple advantaged and protected features are involved. In this work, we introduce a universal debiasing framework that minimizes group-level dependencies by simultaneously reducing the mutual information between advantaged and protected attributes. By leveraging the autoregressive structure and analytic sampling distributions of LLM-based tabular data generators, our approach efficiently computes mutual information, reducing the need for cumbersome numerical estimations. Building on this foundation, we propose two complementary methods: a direct preference optimization (DPO)-based strategy, namely UDF-DPO, that integrates seamlessly with existing models, and a targeted debiasing technique, namely UDF-MIX, that achieves debiasing without tuning the parameters of LLMs. Extensive experiments demonstrate that our framework effectively balances fairness and utility, offering a scalable and practical solution for debiasing in high-stakes applications.