Tian-Yi Che


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SQLWOZ: A Realistic Task-Oriented Dialogue Dataset with SQL-Based Dialogue State Representation for Complex User Requirements
Heng-Da Xu | Xian-Ling Mao | Fanshu Sun | Tian-Yi Che | Cheng-Xin Xin | Heyan Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

High-quality datasets are essential for building effective task-oriented dialogue (TOD) systems. The existing TOD datasets often present overly simplified interactions, where users incrementally express straightforward requests that can be managed with basic slot-value style dialogue states, such as “hotel-area = east.” However, this approach does not reflect real-life scenarios in which users may express complex constraints and preferences. To address this gap, in this paper, we propose SQLWOZ, a novel TOD dataset designed to capture complex, real-world user requirements. The user requirements in SQLWOZ include the four categories: 1) multiple values for a slot, 2) excluded values within a slot, 3) preferred or prioritized values, and 4) conditional values based on other conditions. We utilize SQL statements as a formalized and expressive representation of dialogue states within SQLWOZ. To evaluate the dataset, we adapt large language models as dialogue agents and conduct extensive experiments on the SQL-based dialogue state tracking, dialogue response generation and end-to-end TOD tasks. The experimental results demonstrate the complexity and quality of SQLWOZ, establishing it as a new benchmark for advancing TOD research.