Tian Shi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
LeafNATS: An Open-Source Toolkit and Live Demo System for Neural Abstractive Text Summarization
Tian Shi | Ping Wang | Chandan K. Reddy
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Neural abstractive text summarization (NATS) has received a lot of attention in the past few years from both industry and academia. In this paper, we introduce an open-source toolkit, namely LeafNATS, for training and evaluation of different sequence-to-sequence based models for the NATS task, and for deploying the pre-trained models to real-world applications. The toolkit is modularized and extensible in addition to maintaining competitive performance in the NATS task. A live news blogging system has also been implemented to demonstrate how these models can aid blog/news editors by providing them suggestions of headlines and summaries of their articles.