Thorsten Ries


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Mrs. Dalloway Said She Would Segment the Chapters Herself
Peiqi Sui | Lin Wang | Sil Hamilton | Thorsten Ries | Kelvin Wong | Stephen Wong
Proceedings of the 5th Workshop on Narrative Understanding

This paper proposes a sentiment-centric pipeline to perform unsupervised plot extraction on non-linear novels like Virginia Woolf’s Mrs. Dalloway, a novel widely considered to be “plotless. Combining transformer-based sentiment analysis models with statistical testing, we model sentiment’s rate-of-change and correspondingly segment the novel into emotionally self-contained units qualitatively evaluated to be meaningful surrogate pseudo-chapters. We validate our findings by evaluating our pipeline as a fully unsupervised text segmentation model, achieving a F-1 score of 0.643 (regional) and 0.214 (exact) in chapter break prediction on a validation set of linear novels with existing chapter structures. In addition, we observe notable differences between the distributions of predicted chapter lengths in linear and non-linear fictional narratives, with the latter exhibiting significantly greater variability. Our results hold significance for narrative researchers appraising methods for extracting plots from non-linear novels.